
Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0986

MSA-0986

>6V Fixed Gain Amplifier, Wideband for Use to 4 GHz

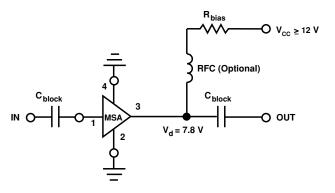
MSA-0986 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0986 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for very wide bandwidth industrial and commercial applications that require flat gain and low VSWR.

The MSA-series is fabricated using Avago's 10 GHz $f_T, 25~{\rm GHz}~f_{MAX}, {\rm silicon}~{\rm bipolar}~{\rm MMIC}~{\rm process}~{\rm which}~{\rm uses}$ nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Broadband, Minimum Ripple Cascadable 50 Ω Gain Block
- + 7.2 \pm 0.5 dB Typical Gain Flatness from 0.1 to 3.0 GHz
- 3 dB Bandwidth: 0.1 to 5.5 GHz
- 10.5 dBm Typical P_{1dB} at 2.0 GHz
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

86 Plastic Package

Typical Biasing Configuration

MSA-0986 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	65 mA	
Power Dissipation ^[2,3]	500 mW	
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature	−65 to +150°C	

Thermal Resistance $^{[2]}$: $\theta_{jc} = 140^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C.$

3. Derate at 7.1 mW/°C for $T_C > 80^\circ C.$

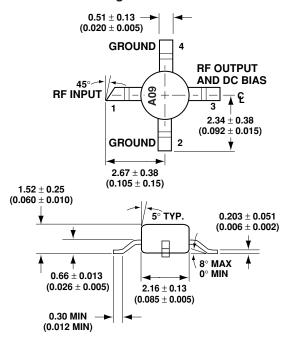
Electrical Specifications^{[1]}, $T_{A}=25^{\circ}C$

Symbol	Parameters and Test Conditions:	$I_d = 35 \text{ mA}, Z_o = 50 \Omega$	Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 2.0 GHz	dB	6.0	7.2	
ΔG_P	Gain Flatness	f = 0.1 to 3.0 GHz	dB		± 0.5	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		5.5	
VOWD	Input VSWR	f = 1.0 to 3.0 GHz			1.6:1	
VSWR	Output VSWR	f = 1.0 to 3.0 GHz			1.8:1	
NF	50 Ω Noise Figure	f = 2.0 GHz	dB		6.2	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 2.0 GHz	dBm		10.5	
IP ₃	Third Order Intercept Point	f = 2.0 GHz	dBm		23.0	
tD	Group Delay	f = 2.0 GHz	psec		95	
Vd	Device Voltage		V	6.2	7.8	9.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-16.0	

Notes:

1. The recommended operating current range for this device is 25 to 45 mA. Typical performance as a function of current is on the following page.

2. Referenced from 0.1 GHz gain (G_P) .


Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0986-BLK	100	Bulk
MSA-0986-BLKG	100	Bulk
MSA-0986-TR1	1000	7" Reel
MSA-0986-TR1G	1000	7" Reel
MSA-0986-TR2	4000	13" Reel
MSA-0986-TR2G	4000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

2

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

